The Fortran Story Retold
Selected Reprints 1968-2011
Compiled by Loren Meissner, 2016
CONTENTS

Journal of Computer Science and Technology (2011)
The Seven Ages of Fortran: Michael Metcalf 67

4. The Fourth Age: The battle for Fortran 90

As computers doubled in power every few years, and became able to perform
calculations on many numbers simultaneously, by the use of processors running
in parallel, and as the problems to be solved became ever more complex, the
question arose as to whether Fortran 77 was still adequate. (And there were a
large number of user requests left over that it had not been possible to include
in it.) Programs of over a million lines became commonplace, and managing
their complexity and having the means to write them reliably and understanda-
bly — so that they produce correct results and could later be modified — were
desperately required.

Thus began the battle over Fortran 90 [and a change to lower case spelling].
Fortran had been attacked by computer scientists on two grounds. One was be-
cause of its positively dangerous aspects, for instance the lack of any inherent
protection against overwriting the contents of memory in the computer, includ-
ing the program instructions themselves! The other was its lack of indispensible
language features, such as the ability to control the logical flow through a pro-
gram in a clearly structured manner. On the other hand, Fortran had always been
a relatively easy language to learn and that, combined with its emphasis on ef-
ficient, high-speed processing, had kept it attractive to many busy scientists.
Thus, the standards committees were faced with the almost impossible task of
modernising the language and making it safer to use, whilst at the same time
keeping it ‘Fortran-like’ and efficient. Fortran 90 was the answer.

There were other justifications for continuing to revise the definition of the
language. As well as standardizing vendor extensions, there was a need to re-
spond to the developments in language design that had been exploited in other
languages, such as APL, Algol 68, Pascal, Ada, C and C++. Here, X3J3 could
draw on the obvious benefits of concepts like data hiding. In the same vein was
the need to begin to provide an alternative to dangerous storage association, to




abolish the rigidity of the outmoded source form, and to improve further on the
regularity of the language, as well as to increase the safety of programming in
the language and to tighten the conformance requirements. To preserve the vast
investment in Fortran 77 codes, the whole of Fortran 77 was retained as a sub-
set. However, unlike the previous standard, which resulted almost entirely from
an effort to standardize existing practices, the Fortran 90 standard was much
more a development of the language, introducing features that were new to
Fortran, although based on experience in other languages. This tactic, in fact,
proved to be highly controversial, both within the committee and with the wider
community. Vested interests got in on the act, determined, depending on their
persuasion, and in particular on whether they were users or vendors, either to
extend Fortran to cope better with new computers and new problem domains or
to stop the whole process in its tracks. The technical and political infighting
reached legendary proportions. It was not until 1991, after much vigorous de-
bate and thirteen years’ work, that Fortran 90 was finally published by 1SO.

It introduced a new notation that allows arrays of numbers, for instance ma-
trices, to be handled in a natural and clear way, and added many new built-in
facilities for manipulating such arrays, for example, to add together all the num-
bers in an array, a single command (sum) is all that is required. The use of the
array-handling facilities made scientific programming simpler, less error prone
and, on the most powerful computers whose hardware can handle vectors of
numbers, potentially more efficient than ever.

To make programs more reliable, the language introduced a wealth of fea-
tures designed to catch programming errors during the early phase of compila-
tion, when they can be quickly and cheaply corrected. These features included
new ways of structuring programs and the ability to ensure that the components
of a program, the subprograms, “fit together’ properly. For instance, Fortran 90
makes it simple to ensure that an argument mismatch can never arise as it ena-
bles programmers to construct verifiable interfaces between subprograms.

In summary, the main features of Fortran 90 were, first and foremost, the
array language and data abstraction. The former is built on whole array opera-
tions and assignments, array sections, intrinsic procedures for arrays, and dy-
namic storage. It was designed with optimization in mind. The latter is built on
modules and module procedures, derived data types, operator overloading and
generic interfaces, together with pointers. Also important were the new facili-
ties for numerical computation, including a set of numeric inquiry functions,
the parameterization of the intrinsic types, new control constructs — select



case and new forms of do, internal and recursive procedures and optional and
keyword arguments, improved 1/O facilities, and many new intrinsic proce-
dures. Last but not least were the new free source form, an improved style of
attribute-oriented specifications, the impl1cit none statement, and a mech-
anism for identifying redundant features for subsequent removal from the lan-
guage. The requirement on compilers to be able to identify syntax extensions,
and to report why a program had been rejected, was also significant. The result-
ing language was not only a far more powerful tool than its predecessor, but a
safer and more reliable one too. Storage association, with its attendant dangers,
was not abolished, but rendered unnecessary. Indeed, experience showed that
compilers detected errors far more frequently than before, resulting in a faster
development cycle. The array syntax and recursion also allowed quite compact
code to be written, a further aid to safe programming. Fortran 90 also allowed
programmers to tailor data types to their exact needs. Another advance was the
language's new ability to structure program data into arbitrarily complex pat-
terns — lists, graphs, trees, etc. — and to manipulate these structures conven-
iently. This is achieved through the use of pointers. A related feature was the
ability to allocate storage for program data dynamically.

After this revision, Fortran became, it must be admitted, a different language,
as the entire issue of the journal [Computer Standards & Interfaces, Vol. 18
(1996)], which is devoted to various aspects of the development of Fortran 90,
shows.



